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A Flexible Hypersonic Vehicle Model Developed With Piston Theory

Michael W. Oppenheimer ∗

Torstens Skujins †

David B. Doman ‡

Michael A. Bolender §

Air Force Research Laboratory, WPAFB, OH 45433-7531

I. Abstract

For high Mach number flows, M ≥ 4, piston theory has been used to calculate the pressures on the
surfaces of a vehicle. In a two-dimensional inviscid flow, a perpendicular column of fluid stays intact as it
passes over a solid surface. Thus, the pressure at the surface can be calculated assuming the surface were a
piston moving into a column of fluid. In this work, first-order piston theory is used to calculate the forces,
moments, and stability derivatives for longitudinal motion of a hypersonic vehicle. Piston theory predicts a
relationship between the local pressure on a surface and the normal component of fluid velocity produced
by the surface’s motion. The advantage of piston theory over other techniques, such as Prandtl-Meyer flow,
oblique shock, or Newtonian impact theory, is that unsteady aerodynamic effects can be included in the
model. Prandtl-Meyer flow and oblique shock theory are utilized to provide flow properties over the surfaces
of the vehicle. These flow properties are used to determine the steady forces and moments and are also
included in the unsteady flow calculations. Thus, this work utilizes a combination of Prandtl-Meyer flow,
oblique shock, and piston theory to calculate forces and moments. The unsteady effects, considered in this
work, include perturbations in the linear velocities and angular rates, due to rigid body motion. A flexible
vehicle model is developed to take into account the aeroelastic behavior of the vehicle. The vehicle forebody
and aftbody are modelled as cantilever beams fixed at the center-of-gravity. Piston theory is used to account
for the changes in the forces and moments due to the flexing of the vehicle. Piston theory yields an analytical
model for the longitudinal motion of the vehicle, thus allowing design trade studies to be performed while
still providing insight into the physics of the problem.

II. Introduction

In the 1980’s, the National Aerospace Plane (NASP) program commenced, with its goal being a feasibility
study for a single-stage to orbit (SSTO) vehicle, which was reusable and could take off and land horizontally.
The NASP was to be powered by a supersonic combustion ramjet (scramjet) engine. Although this program
was cancelled in the 1990’s, a great deal of knowledge was gained and it spawned future programs, including
the hypersonic systems technology program (HySTP), initiated in late 1994, and the NASA X-43A. The
HySTP’s goal was to transfer the accomplishments of the NASP program to a technology demonstration
program. This program was cancelled in early 1995. The NASA X-43A set new world speed records in 2004,
reaching Mach 6.8 and Mach 9.6 on two separate occasions with a scramjet engine. These flights were the
culmination of NASA’s Hyper-X program, with the objective being to explore alternatives to rocket power
for space access vehicles.
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With renewed interest in space operations worldwide, there is an interest in hypersonic aerodynamics
research. The scramjet engine will likely play a major role in future hypersonic vehicles. Unlike a conventional
turbojet engine, a scramjet engine does not use high speed turbomachinery to compress the air before it
reaches the combustor. Instead, it relies upon the rise in pressure across oblique shock waves located in front
of the inlet. Furthermore, the flow through the entire engine is supersonic in contrast to a ramjet, where the
flow speeds are subsonic through the combustor. On configurations like the NASP and X-43A, the underside
of the airframe must function as the air inlet mechanism and the exhaust nozzle. Therefore, integration of
the airframe and engine are critical to success of a scramjet powered vehicle.

Scramjets could be used as part of a multi-stage launch vehicle that would include multiple propulsion
systems to perform a mission. The factor driving research towards scramjets and away from rockets is cost;
scramjets would substantially lower costs because it is an airbreathing engine. Airbreathing engines don’t
require oxidizer to be carried by the vehicle, hence increasing the payload and reducing the quantity of fuel
carried.

Unsteady aerodynamics are a phenomenon that must be considered in the development and optimization
of future hypersonic vehicles. The combined effects of a slender flexible vehicle travelling at high speeds and
subjected to large forces may lead to significant unsteady aerodynamic effects. Hence, understanding the
concepts and consequences of time-dependent aerodynamic flows is critical to the successful development of
this type of vehicle.

Piston theory is a technique that has been used for years to determine the pressure distributions on an
airfoil/vehicle, when the Mach number is sufficiently high. Lighthill1 discussed the application of piston
theory on oscillating airfoils some 50 years ago. Ashley and Zartarian2 discuss piston theory while providing
a number of examples of the application of piston theory to specific problems. More recently, Tarpley3

discussed the computation of stability derivatives for a caret-wing waverider using piston theory, which
requires the analysis of unsteady flow over the vehicle. Piston theory allows the inclusion of unsteady
aerodynamic effects in the model and a closed form solution can be found for these unsteady effects.

In this work, piston theory is applied to a hypothetical 2-dimensional hypersonic vehicle powered with
a scramjet. This work uses first-order piston theory to compute unsteady effects behind shock waves and
expansion fans. A recent study4 revealed that this method of computing unsteady aerodynamic effects
delivered highly accurate results when compared to computational fluid dynamics solutions and higher order
piston theory models. This paper builds on previous work5 by incorporating a flexible vehicle model and
determining the perturbations to forces and moments due to flexibility.

In Section III, the vehicle analyzed in this work is described, while the steady forces and pressures on the
vehicle’s surfaces are provided in Section IV. The unsteady effects due to the aerodynamic control surfaces
are included in Section V, the total rigid body forces and moments are discussed in Section VI, while the
aeroelastic model is developed in Section VII. Results are provided in Section VIII, conclusions are given in
Section IX, and Appendix A contains detailed calculations for many of the flexible stability derivatives.

III. HSV Model

Figure 1 shows the 2-dimensional hypersonic vehicle considered in this work.6 The longitudinal force and
moment analysis is taken as unit depth into the page. The vehicle consists of 4 surfaces: an upper surface
(defined by points cf) and three lower surfaces (defined by points cd, gh, and ef). All pertinent lengths and
dimensions are in units of feet and degrees, respectively. The total length of the vehicle is L = 100ft and
the notation for lengths is Lf = length of the forebody, Ln = length of the engine nacelle, La = length of
the aftbody, Le is the length of the elevator, Lc is the length of the canard, x̄f is the distance from the C.G.
to the front of the vehicle, x̄a is the distance from the C.G. to the rear of the vehicle, xelev and zelev are the
distances from the C.G. to the midpoint of the elevator in the x and z directions, respectively, xcanard is the
distance from the C.G. to the midpoint of the canard, and hi is the engine height. The vehicle dimensions
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Figure 1. Hypersonic Vehicle.

are
L = 100 ft

Lf = 47 ft

La = 33 ft

Ln = 20 ft

Le = 17 ft

Lc = 10 ft

x̄f = 55 ft

x̄a = 45 ft

xelev = 30 ft

zelev = 3.5 ft

hi = 3.25 ft

xcanard = 40 ft

(1)

The vehicle angles are

τ1,U = 3◦

τ1,L = 6◦

τ2 = 14.41◦
(2)

Additionally, the vehicle mass and moment of inertia are

Mass = 300 slug
ft

Jyy = 500, 000 slug−ft2

ft

(3)
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and the mean aerodynamic chord (c̄) and planform area (S) are defined as

c̄ = L

S = L2
(4)

The goal is to apply piston theory to this 2-dimensional vehicle geometry to determine the pressure
distribution on the surfaces of the vehicle, which, in turn, can be used to evaluate the forces and moments.
The pressure on the face of a piston moving into a column of perfect gas is2

P

P∞

=

(

1 +
γ − 1

2

Vn

a∞

)

2γ
γ−1

(5)

where the subscript ”∞” refers to the steady flow conditions past the surface, Vn is the velocity of the surface
normal to the steady flow, a∞ is the freestream speed of sound, and P is the surface pressure. Taking the
binomial expansion of Eq. 5, to first order, produces

P

P∞

= 1 +
2γ

γ − 1

γ − 1

2

Vn

a∞

= 1 +
γVn

a∞

(6)

Multiplying through by P∞ and using the perfect gas law (P = ρRT ) and the definition of the speed of
sound (a2 = γRT ) yields the basic result from first-order linear piston theory

P = P∞ + ρ∞a∞Vn (7)

where γ is the ratio of specific heats and R is the gas constant. The infinitesimal force, on an elemental area,
due to the pressure is given by

dF = −PdAn (8)

where dA is a surface element and n is the outward pointing normal. Substituting Eq. 7 into Eq. 8 yields

dF = (−P∞ − ρ∞a∞Vn) dAn (9)

The normal velocity can be computed by taking the dot product of the flow velocity over a surface and the
outward pointing normal for that surface. Hence, Eq. 9 becomes

dF = (−P∞ − ρ∞a∞ [V · n]) dAn (10)

Equation 10 is the basic result upon which this work is based. From this equation, it is seen that in order
to compute the forces acting on a surface, one must determine the properties of the flow past the surface
(properties behind a shock, expansion fan, or freestream), the velocity of the surface relative to the airstream,
V, the outward pointing surface normal, n, and the surface element, dA. The work that follows will develop
these quantities for the upper and lower surfaces of the vehicle, as well as for the control effectors.

IV. Vehicle Surface Pressure Distributions and Forces

The differential forces on the surfaces of the vehicle were computed by Oppenheimer and Doman5 and
are repeated below:

dFcf = (−Pcf − ρcfacf {[u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx] cos τ1,U})
[

sin τ1,U î − cos τ1,U k̂
]

sec τ1,Udx

(11)

dFcd = (−Pcd − ρcdacd {[u − q tan τ1,L (x − x̄f )] sin τ1,L + [w − qx] cos τ1,L})
[

sin τ1,Lî + cos τ1,Lk̂
]

sec τ1,Ldx

(12)

dFgh = (−Pgh − ρghagh {w − qx})
[

1k̂
]

dx (13)

dFef = (−Pef − ρefaef {− (u + qrefz
) sin (τ1,U + τ2) + (w − qx) cos (τ1,U + τ2)})nef sec (τ1,U + τ2) dx

(14)
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where
nef = − sin (τ1,U + τ2) î + cos (τ1,U + τ2) k̂ (15)

and
refz

= [tan (τ1,U + τ2) (x + x̄a) − L tan τ1,U ] (16)

where u, w, and q are small perturbations in a steady flight condition of the forward velocity, normal velocity,
and pitch rate, respectively. The steady forces are computed by integrating the steady components of the
differential forces over the corresponding surface. Performing the integrations yields

Fcfa
= −Pcf x̄a sec τ1,U

[

sin τ1,U î − cos τ1,U k̂
]

= Xcfa
î + Zcfa

k̂

Fcff
= −Pcf x̄f sec τ1,U

[

sin τ1,U î − cos τ1,U k̂
]

= Xcff
î + Zcff

k̂
(17)

where Xcfa
, Zcfa

are the components of the aftbody upper surface force in the x and z directions, respectively,
and Xcff

, Zcff
are the components of the forebody upper surface force in the x and z directions. The lower

surface forces are

Fcd = −PcdLf sec τ1,L

[

sin τ1,Lî + cos τ1,Lk̂
]

= Xcdî + Zcdk̂

Fgh = −PghLnk̂ = Xghî + Zghk̂
(18)

while on the rear ramp, the vector force due to the external nozzle is

Fef =
LaPeP∞

cos (τ1,U + τ2) (Pe − P∞)
ln

Pe

P∞

[

sin (τ1,U + τ2) î − cos (τ1,U + τ2) k̂
]

= Xef î + Zef k̂ (19)

where Xef and Zef are the axial and normal force components of the external nozzle force and Pe is the
engine exit pressure.

A. Control Surfaces

The control surfaces are an elevator and canard as shown in Fig. 1. Both surfaces are modelled as flat plates
hinged at their midpoints so the entire surface deflects. Positive deflection is defined as trailing edge down.
The x and z positions of the midpoint of the elevator and canard referenced to the C.G. are xelev, zelev and
xcanard, 0. The canard was added to this vehicle for two reasons. First, the elevator produces a significant
amount of lift and results in a non-minimum phase flight path angle response.7 Adding the canard and
forcing it to respond in conjunction with the elevator compensates for the lift produced by the elevator and
reduces the non-minimum phase behavior. Secondly, the canard can be utilized for low speed control and
reduces the takeoff and landing speeds since they produce positive lift in conjunction with a nose up pitching
moment. In this work, the canard is not ganged to the elevator, rather, it is free to move. Hence, the
non-minimum phase flight path angle response is still present. However, this allows the determination of the
steady and unsteady forces and moments due to the canard.

1. Elevator

The upper and lower forces on the elevator can be computed as

FeU
=

∫ −xelev+ Le
2 cos δe

−xelev−
Le
2 cos δe

[−PeU
− ρeU

aeU
{VeU

� neU
}]
[

− sin δeî − cos δek̂
]

sec δedx (20)

FeL
=

∫ −xelev+ Le
2 cos δe

−xelev−
Le
2 cos δe

[−PeL
− ρeL

aeL
{VeL

� neL
}]
[

sin δeî + cos δek̂
]

sec δedx (21)

where

VeU
� neU

= − (u − q {zelev + tan δe (x + xelev)}) sin δe − (w − qx) cos δe (22)

VeL
� neL

= (u − q {zelev + tan δe (x + xelev)}) sin δe + (w − qx) cos δe (23)
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2. Canard

In order to determine the steady and unsteady forces and moments due to the canard, Eq. 10 must be
evaluated. Hence, the flow properties on the top and bottom surfaces of the canard along with a position
vector, normal vector, and surface element must be determined. For the canard, the flow properties are

If δc = −α =⇒ Freestream

If δc < −α =⇒ Shock on top, expansion on bottom

If δc > −α =⇒ Expansion on top, shock on bottom

(24)

The position vector from the C.G. to an arbitrary point on the canard is given by

rc = xî + [− tan δc (x − xcanard) + zcanard]

xcanard − Lc

2 cos δc ≤ x ≤ xcanard + Lc

2 cos δc

(25)

where zcanard = 0 for this configuration. The outward pointing normal vectors for this surface, relative to
the body axis, are

ncU
= − sin δcî − cos δck̂

ncL
= sin δcî + cos δck̂

(26)

and the surface element is
dAc = sec δc(1)dx (27)

To compute the forces, moments, and stability derivatives, consider small perturbations, from a steady flight
condition, in the velocities u and w and the pitch rate q. The velocity of a point on the upper and lower
surfaces of the canard, due to these perturbations, is

VcU
= (VcU

cos δc + u) î + (−VcU
sin δc + w) k̂ + ω × rc

VcL
= (VcL

cos δc + u) î + (−VcL
sin δc + w) k̂ + ω × rc

(28)

where VcU
and VcL

are the flow velocities on the upper and lower surface of the canard (as determined from
the flow analysis) and ω = qĵ is the angular rate vector. Using Eqs. 24 - 28 in Eq. 10 yields the differential
forces due to the canard:

dFcU
= [−PcU

− ρcU
acU

{− sin δc (u + q [− tan δc (x − xcanard) + zcanard]) − cos δc (w − qz)}]ncU
dAcU

dFcL
= [−PcL

− ρcL
acL

{sin δc (u + q [− tan δc (x − xcanard) + zcanard]) + cos δc (w − qz)}]ncL
dAcL

(29)
The steady forces are computed by integrating the steady component of Eq. 29, hence,

FcU
=
∫ xcanard+ Lc

2 cos δc

xcanard−
Lc
2 cos δc

−PcU

(

− sin δcî − cos δck̂
)

sec δcdx = PcU
Lc sin δcî + PcU

Lc cos δck̂ = XcU
î + ZcU

k̂

FcL
=
∫ xcanard+ Lc

2 cos δc

xcanard−
Lc
2 cos δc

−PcL

(

sin δcî + cos δck̂
)

sec δcdx = −PcL
Lc sin δcî − PcL

Lc cos δck̂ = XcL
î + ZcL

k̂

(30)
The corresponding moments are calculated using McU

= rc × FcU
and McL

= rc × FcL
such that

McU
= −xcanardPcU

Lc cos δc + zcanardPcU
Lc sin δc = −xcanardPcU

Lc cos δc

McL
= xcanardPcL

Lc cos δc − zcanardPcL
Lc sin δc = xcanardPcL

Lc cos δc

(31)

where the last inequalities in Eq. 31 result from zcanard being zero.

V. Unsteady Control Surface Effects

The unsteady effects due to velocity and rate perturbations on the control surfaces are found using the
unsteady portions of Eqs. 20, 21, and 29.
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A. Elevator Unsteady Effects

The normal force stability derivative due to the elevator is

(CZw
)δe

=
1

q∞S

∫

(dF)z−w =
1

q∞S

∫

(dFeU
)z−w +

1

q∞S

∫

(dFeL
)z−w (32)

Performing the necessary substitutions produces

(CZw
)δe

=
1

q∞S

[

∫ −xelev+ Le
2 cos δe

−xelev−
Le
2 cos δe

−ρeU
aeU

w cos δedx +

∫ −xelev+ Le
2 cos δe

−xelev−
Le
2 cos δe

−ρeL
aeL

w cos δedx

]

(33)

Integrating, letting w ≈ V∞α, and simplifying yields

(

∂CZ

∂α

)

δe

=
− (ρeU

aeU
+ ρeL

aeL
) V∞Le cos2 δe

q∞S
(34)

Using similar analysis, the axial force component becomes

(CXw
)δe

=
1

q∞S

∫

(dF)x−w =
1

q∞S

∫

(dFeU
)x−w +

1

q∞S

∫

(dFeL
)x−w

=⇒

(

∂CX

∂α

)

δe

=
− (ρeU

aeU
+ ρeL

aeL
) V∞Le cos δe sin δe

q∞S

(35)

The pitching moment contribution due to w motion is

(CMw
)δe

=
1

q∞Sc̄

[
∫

z (dFeU
)x−w +

∫

z (dFeL
)x−w −

∫

x (dFeU
)z−w −

∫

x (dFeL
)z−w

]

=⇒

(

∂CM

∂α

)

δe

=
(ρeU

aeU
+ ρeL

aeL
)
(

zelevLe sin δe cos δe − xelevLe cos2 δe

)

V∞

q∞Sc̄

(36)

The normal force increment due to pitch rate is

(

CZq

)

δe
=

1

q∞S

[
∫

(dFeU
)z−q +

∫

(dFeL
)z−q

]

=⇒

(

∂CZ

∂q

)

δe

=
(ρeU

aeU
+ ρeL

aeL
) [Le sin δe cos δe {zelev + xelev tan δe} − xelevLe]

q∞S

(37)

The final stability derivative for the elevator is the pitching moment increment due to pitch rate, which
becomes

(

CMq

)

δe
=

1

q∞Sc̄

[
∫

z (dFeU
)x−q +

∫

z (dFeL
)x−q −

∫

x (dFeU
)z−q −

∫

x (dFeL
)z−q

]

(38)

Performing the required operations yields
(

∂CM

∂q

)

δe

=
(ρeU

aeU
+ ρeL

aeL
)

q∞Sc̄

[

Le sin δe cos δe

(

tan δe

{

x2
elev − z2

elev

}

+ xelevzelev

{

1 − tan2 δe

})]

+
(ρeU

aeU
+ ρeL

aeL
)

q∞Sc̄
(zelev + xelev tan δe) xelevLe tan δe

−
(ρeU

aeU
+ ρeL

aeL
)

q∞Sc̄

(

tan2 δe − 1

3 cos δe

)

(

{

−xelev +
Le

2
cos δe

}3

−

{

−xelev −
Le

2
cos δe

}3
)

(39)

B. Canard Unsteady Effects

The normal force stability derivative due to the canard is

(CZw
)δc

=
1

q∞S

∫

(dFcU
)z−w +

1

q∞S

∫

(dFcL
)z−w (40)
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which becomes
(

∂CZ

∂α

)

δc

= −
(ρcU

acU
+ ρcL

acL
)
(

V∞Lc cos2 δc

)

q∞S
(41)

The axial force increment due to motion in the vertical direction becomes

(CXw
)δc

=
1

q∞S

∫

(dFCU
)x−w +

1

q∞S

∫

(dFCL
)x−w

=⇒

(

∂CX

∂α

)

δc

=
− (ρcU

acU
+ ρcL

acL
)V∞Lc cos δc sin δc

q∞S

(42)

The pitching moment contribution due to w motion is

(CMw
)δc

=
1

q∞Sc̄

[
∫

z (dFcU
)x−w +

∫

z (dFcL
)x−w −

∫

x (dFcU
)z−w −

∫

x (dFcL
)z−w

]

=⇒

(

∂CM

∂α

)

δc

=
(ρcU

acU
+ ρcL

acL
)
(

−zcanardLc sin δc cos δc + xcanardLc cos2 δc

)

V∞

q∞Sc̄

(43)

The normal force increment due to pitch rate is

(

CZq

)

δc
=

1

q∞S

[
∫

(dFcU
)z−q +

∫

(dFcL
)z−q

]

=⇒

(

∂CZ

∂q

)

δc

=
(ρcU

acU
+ ρcL

acL
)
[

xcanardLc cos2 δc − zcanardLc sin δc cos δc

]

q∞S

(44)

The final stability derivative for the canard is the pitching moment increment due to pitch rate, which
becomes

(

CMq

)

δc
=

1

q∞Sc̄

[
∫

z (dFcU
)x−q +

∫

z (dFcL
)x−q −

∫

x (dFcU
)z−q −

∫

x (dFcL
)z−q

]

(45)

Performing the required operations yields 
∂CM

∂q

!
δc

=

�
ρcU

acU
+ ρcL

acL

�
q∞Sc̄

24− sin2 δcL3
c

12
− z

2
canardLc sin

2
δc −

L3
c

12
sin

2
δc cos

2
δc − x

2
canardLc cos

2
δc −

L3
c cos4 δc

12

35 (46)

VI. Total Forces and Moments - Rigid Body

With the inclusion of the stability derivatives, the thrust, and resulting engine moment,5 the total
aerodynamic forces and moments on the vehicle are

Xtotal = Xcff
+ Xcfa

+ Xcd + Xgh + Xef + XeL
+ XeU

+ XcU
+ XcL

+ T + q∞S
∂CX

∂α
α

+q∞S

(

∂CX

∂α

)

δe

α + q∞S

(

∂CX

∂α

)

δc

α
(47)

Ztotal = Zcff
+ Zcfa

+ Zcd + Zgh + Zef + ZeL
+ ZeU

+ ZcU
+ ZcL

+ q∞S
∂CZ

∂α
α + q∞S

∂CZ

∂q

qc̄

2V∞

+q∞S

(

∂CZ

∂α

)

δe

α + q∞S

(

∂CZ

∂α

)

δc

α + q∞S

(

∂CZ

∂q

)

δe

qc̄

2V∞

+ q∞S

(

∂CZ

∂q

)

δc

qc̄

2V∞

(48)

Mtotal = Mcff
+ Mcfa

+ Mcd + Mgh + Mef + MeL
+ MeU

+ McU
+ McL

+ Mengine + q∞Sc̄
∂CM

∂α
α+

q∞Sc̄
∂CM

∂q

qc̄

2V∞

+ q∞Sc̄

(

∂CM

∂α

)

δe

α + q∞Sc̄

(

∂CM

∂α

)

δc

α + q∞Sc̄

(

∂CM

∂q

)

δe

qc̄

2V∞

+ q∞Sc̄

(

∂CM

∂q

)

δc

qc̄

2V∞

(49)

where Mengine and T are the moment and thrust produced by the engine. It can be seen that Eqs. 47- 49
do not contain any inlet turning forces/moments that was present in previous work. Here, a reflected shock
from the engine inlet was modelled and performs the flow turning.
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VII. Flexible Effects

Thus far, only unsteady effects due to rigid body motion have been considered. Full scale hypersonic
airbreathing vehicles are expected to be long and slender and thus highly flexible. This structural bending
affects downstream flow resulting in localized changes in surface pressure along the body and thus, should be
incorporated into the model. In this section, the flexible effects are included in the analysis. Piston theory
is still used to determine the pressure distribution on the surfaces of the vehicle and much of the analysis
already presented can be easily adapted to included these additional effects.

A. Flexible Model

In order to develop the aeroelastic model, a few assumptions are made. First, the flexible vehicle is modelled
as two cantilever beams fixed at the c.g. (one for the forebody section of the vehicle and one for the aftbody
section of the vehicle). Second, the beams are assumed to have constant mass density, area, and flexural
rigidity (EI), where EI is chosen to give the desired natural frequency of vibration. Also, it is assumed
that the flexible effects only perturb the surface velocities in the z (normal) direction. This assumption is
justified using the small angle approximation, i.e., the deflection of the tip of the beam is small compared
to the length of the beam. Lastly, it is assumed that the change in angle of attack, as seen by the entire
forebody, is the change in angle of attack as seen by the tip of the vehicle, point (x̄f , 0) in Fig. 1. Since the
tip experiences the largest deflection, this is a worst-case assumption. This change in angle of attack is used
to compute the flow properties behind the bow shock and those flow properties are assumed constant over
the lower forebody.

The transverse vibrations in the beam satisfy the following partial differential equation:8

EI
∂4w(x, t)

∂x4
+ m̂

∂2w(x, t)

∂t2
= 0 (50)

where w(x, t) describes the position of the beam, relative to the body x-axis, E is Young’s Modulus, I is the
moment of inertia of the beam cross-section about the y-axis, and m̂ is the mass density of the beam. This
problem is typically solved using separation of variables. Assume

w(x, t) = Φ(x)η(t) (51)

Substituting the expression for w(x, t) in Eq. 51 into Eq. 50 and simplifying yields

EI

m̂Φ(x)

∂4Φ(x)

∂x4
= −

1

η(t)

∂2η(t)

∂t2
(52)

Since the left side of Eq. 52 does not change as time varies, the right side of Eq. 52 must be a constant.
Similarly, since the right side of Eq. 52 does not change as x varies, the left side of Eq. 52 must be a constant.
Let this constant be ω2, such that

EI

m̂Φ(x)

∂4Φ(x)

∂x4
= −

1

η(t)

∂2η(t)

∂t2
= ω2 (53)

Utilizing the method of separation of variables, Eq. 53 can be written as two differential equations, one with
respect to position and one with respect to time:

∂4Φ(x)

∂x4
− β4Φ(x) = 0 (54)

∂2η(t)

∂t2
+ ω2η(t) = 0 (55)

where β4 = ω2m̂
EI

. The general solution to Eq. 54 is8

Φ(x) = C1 sin βx + C2 cos βx + C3 sinh βx + C4 cosh βx (56)

Using the following boundary conditions for the forward beam

d2Φ(x)
dx2 |x=x̄f

= 0 d3Φ(x)
dx3 |x=x̄f

= 0

Φ(x)|x=0 = 0 dΦ(x)
dx

|x=0 = 0
(57)
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which state that the bending moment and shear force are zero at the free location (x = x̄f ) and the
displacement and slope are zero at the fixed location (x = 0), along with the modal shape expression,
(Eq. 56), and simplifying results in the frequency equation

cos βf x̄f cosh βf x̄f = −1 (58)

Eq. 58 has an infinite number of solutions with the first few given by

βf,rx̄f = 1.8751, 4.6941, 7.8548, 10.9955, 14.1372, . . . (59)

The values of βf,r, r = 1, 2, 3, . . . in Eq. 59 are called the eigenvalues. Corresponding to these eigenvalues,
the natural modes of the forward beam are8

Φf,r(x) = Af,r [(sinβf,rx̄f − sinhβf,rx̄f ) (sin βf,rx − sinhβf,rx)]

+Af,r [(cos βf,rx̄f + coshβf,rx̄f ) (cos βf,rx − cosh βf,rx)]
(60)

where Af,r is a normalizing factor, selected such that

∫ x̄f

0

m̂fΦ2
f,r(x)dx = 1 (61)

where m̂f is the mass density of the forebody beam defined as

m̂f =
Mass

(

1 −
x̄f

L

)

x̄f

(62)

Thus, Af,r becomes

Af,r =
1

√

m̂f

[

Af,rP1
+ Af,rP2

+ Af,rP3

]

(63)

where

Af,rP1
=

(sin βf,rx̄f − sinh βf,rx̄f )
2

4βf,r

[M1f ] (64)

Af,rP2
=

(sinβf,rx̄f − sinh βf,rx̄f ) (cos βf,rx̄f + coshβf,rx̄f )

βf,r

(sin βf,rx̄f − sinh βf,rx̄f )
2

(65)

Af,rP3
=

(cos βf,rx̄f + cosh βf,rx̄f )
2

4βf,r

[M3f ] (66)

and

M1f = −2 cos βf,rx̄k sin βf,rx̄k + sinh 2βf,rx̄k − 4 sin βf,rx̄k cosh βf,rx̄k + 4 cos βf,rx̄k sinhβf,rx̄k (67)

M3f = 2 cos βf,rx̄k sinβf,rx̄k +sinh 2βf,rx̄k−4 cos βf,rx̄k sinhβf,rx̄k−4 sin βf,rx̄k cosh βf,rx̄k +4βf,rx̄k (68)

For the aft beam, the boundary conditions are

d2Φ(x)
dx2 |x=x̄a

= 0 d3Φ(x)
dx3 |x=x̄a

= 0

Φ(x)|x=0 = 0 dΦ(x)
dx

|x=0 = 0
(69)

and the frequency equation becomes
cos βax̄a cosh βax̄a = −1 (70)

with solutions
βa,rx̄a = 1.8751, 4.6941, 7.8548, 10.9955, 14.1372, . . . (71)

The natural modes of the aft beam are

Φa,r(x) = Aa,r [(sinβa,rx̄a − sinhβa,rx̄a) (sin βa,rx − sinh βa,rx)]

+Aa,r [(cos βa,rx̄a + coshβa,rx̄a) (cos βa,rx − cosh βa,rx)]
(72)
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and Aa,r is selected such that
∫ x̄a

0

m̂aΦ2
a,r(x)dx = 1 (73)

and

m̂a =
Mass

(

1 − x̄a

L

)

x̄a

(74)

Thus, Aa,r becomes

Aa,r =
1

√

m̂a

[

Aa,rP1
+ Aa,rP2

+ Aa,rP3

]

(75)

where

Aa,rP1
=

(sinβa,rx̄a − sinhβa,rāf )
2

4βa,r

[M1a] (76)

Aa,rP2
=

(sinβa,rx̄a − sinhβa,rx̄a) (cos βa,rx̄a + cosh βa,rx̄a)

βa,r

(sinβa,rx̄a − sinhβa,rx̄a)
2

(77)

Aa,rP3
=

(cos βa,rx̄a + cosh βa,rx̄a)
2

4βa,r

[M3a] (78)

and

M1a = −2 cos βa,rx̄a sinβa,rx̄a + sinh 2βa,rx̄a − 4 sin βa,rx̄a cosh βa,rx̄a + 4 cos βa,rx̄a sinhβa,rx̄a (79)

M3a = 2 cos βa,rx̄a sinβa,rx̄a +sinh 2βa,rx̄a−4 cos βa,rx̄a sinh βa,rx̄a−4 sin βa,rx̄a cosh βa,rx̄a +4βa,rx̄a (80)

B. Forced Response

Let the forcing function in Eq. 50 consist of distributed and concentrated loads so that Eq. 50 can be written
as

EI
∂4w(x, t)

∂x4
+ m̂

∂2w(x, t)

∂t2
= f(x, t) + Fj(t)δ(x − xj) (81)

where δ(x) is the dirac delta function defined as

δ(x − xj) =

{

1 if x = xj

0 if x 6= xj

}

(82)

From the expansion theorem, the solution to Eq. 81 is

wf (x, t) =

∞
∑

r=1

Φf,r(x)ηf,r(t) (83)

for the forebody beam and

wa(x, t) =

∞
∑

r=1

Φa,r(x)ηa,r(t) (84)

for the aftbody beam where ηf,r(t), ηa,r(t) are the generalized modal coordinates, for the forebody and
aftbody beams, that satisfy

η̈f,r(t) + 2ζf,rωf,rη̇f,r(t) + ω2
f,rηf,r(t) = Nf,r(t)

η̈a,r(t) + 2ζa,rωa,rη̇a,r(t) + ω2
a,rηa,r(t) = Na,r(t)

(85)

Here, Nf,r(t), Na,r(t) are generalized forces for the rth mode shape of the forebody/aftbody beam, defined
by8

Nf,r(t) =

∫ x̄f

0

Φf,r(x)ff (x, t)dx +

n
∑

j=1

Φf,r(xj)Ff,j(t)

Na,r(t) =

∫ x̄a

0

Φa,r(x)fa(x, t)dx +

n
∑

j=1

Φa,r(xj)Fa,j(t)

(86)
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where n is the number of concentrated loads on the beam. Given the loading on the forebody and aftbody
beams, the generalized forces for the first mode become

Nf,1(t) =

∫ x̄f

0

Φf,1(x)Pcfdx −

∫ x̄f

x̄f−Lf

Φf,1(x)Pcddx + Φf,1(xcanard) (PcU
− PcL

) Lc

Na,1(t) =

∫ x̄a

0

Φa,1(x)Pcfdx −

∫ x̄a

x̄a−La

Φa,1(x)Pefdx + Φa,1(xelev) (PeU
− PeL

)Le

(87)

These expressions are displayed in Appendix A.
In order to incorporate aeroelastic effects into the model, a few simplifying assumptions are made. First,

the vehicle does not stretch or compress along the x-axis. Second, for small displacements, when the beams
(vehicle) flexes, there is no change in the x direction displacement. With these assumptions, aeroelastic effects
only occur in the z-direction. Additionally, it is assumed that the engine nacelle is rigid. The aeroelastic
effects can be accounted for by taking the time derivative of Eqs. 83 and 84

ẇf (x, t) =

∞
∑

r=1

Φf,r(x)η̇f,r(t)

ẇa(x, t) =
∞
∑

r=1

Φa,r(x)η̇a,r(t)

(88)

and including this effect in the expressions for the velocities on the upper and lower surfaces, namely Eqs. 11,
12, and 14. The differential forces on the surfaces become

dFcff
= (−Pcf − ρcfacf {[u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx + ẇf (x, t)] cos τ1,U}) sec τ1,Uncfdx

(89)
dFcfa

= (−Pcf − ρcfacf {[u + q tan τ1,U (x − x̄f )] sin τ1,U − [w − qx + ẇa(x, t)] cos τ1,U}) sec τ1,Uncfdx
(90)

dFcd = (−Pcd − ρcdacd {[u − q tan τ1,L (x − x̄f )] sin τ1,L + [w − qx + ẇf (x, t)] cos τ1,L}) sec τ1,Lncddx (91)

dFef = (−Pef − ρefaef {− (u + qrefz
) sin (τ1,U + τ2) + (w − qx + ẇa(x, t)) cos (τ1,U + τ2)}) sec (τ1,U + τ2)nefdx

(92)
where the upper surface force has been split into forebody and aftbody parts to account for the two beam
structural model. With these differential forces, stability derivatives due to the bending of the vehicle can
be determined. For the normal force on the forebody beam,

(CZ)ẇforebody
=

1

q∞S

[

∫ x̄f

0

(dFcf )
z−ẇ

+

∫ x̄f

x̄f−Lf

(dFcd)z−ẇ

]

=
1

q∞S

∫ x̄f

0

−ρcfacf ẇ cos τ1,Udx +

∫ x̄f

x̄f−Lf

−ρcdacdẇ cos τ1,Ldx

(93)

Substituting Eq. 88 into Eq. 93 produces

(CZ)ẇforebody
=

1

q∞S

∫ x̄f

0

−ρcfacf

∞
∑

r=1

Φf,r(x)η̇f,r(t) cos τ1,Udx +

∫ x̄f

x̄f−Lf

−ρcdacd

∞
∑

r=1

Φf,r(x)η̇f,r(t) cos τ1,Ldx

(94)

which, for the first bending mode becomes

∂CZ

∂η̇f,1

=
1

q∞S

Z x̄f

0

−ρcfacfΦf,1(x) cos τ1,Udx +

Z x̄f

x̄f−Lf

−ρcdacdΦf,1(x) cos τ1,Ldx

=
1

q∞S

�
−2ρcfacf cos τ1,UAf,1

βf,1

(sin βf,1x̄f − sinh βf,1x̄f )

�
−

ρcdacd cos τ1,LAf,1

βf,1q∞S
[(sin βf,1x̄f − sinh βf,1x̄f ) (cos βf,1 (x̄f − Lf ) + cosh βf,1 (x̄f − Lf ))]

−

ρcdacd cos τ1,LAf,1

βf,1q∞S
[(cos βf,1x̄f + cosh βf,1x̄f ) (− sin βf,1 (x̄f − Lf ) + sinh βf,1 (x̄f − Lf ))]

(95)
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where Af,1 is the normalizing factor associated with the first mode. Using the assumption that the flexible
effects only perturb the surface velocities in the z-direction, the axial force stability derivative associated
with the flexible effect becomes

∂CX

∂η̇f,1 forebody

= 0 (96)

For the pitching moment,

(CM )ẇforebody
=

1

q∞Sc̄

[

∫ x̄f

0

z (dFcf )
x−ẇ

+

∫ x̄f

x̄f−Lf

z (dFcd)x−ẇ

]

−
1

q∞Sc̄

[

∫ x̄f

0

x (dFcf )
z−ẇ

+

∫ x̄f

x̄f−Lf

x (dFcd)z−ẇ

] (97)

For the first mode only, this expression is displayed in Appendix A.
For the aftbody beam, the Z direction force due to flexibility is

(CZ)ẇaftbody
=

1

q∞S

[
∫ x̄a

0

(dFcf )
z−ẇ

+

∫ x̄a

x̄a−La

(dFef )
z−ẇ

]

(98)

and this expression is evaluated in Appendix A.
The pitching moment coefficient due to aftbody flexibility is

(CM )ẇaftbody
=

1

q∞Sc̄

[
∫ x̄a

0

z (dFcf )
x−ẇ

+

∫ x̄a

x̄a−La

z (dFef )
x−ẇ

]

−
1

q∞Sc̄

[
∫ x̄a

0

x (dFcf )
z−ẇ

+

∫ x̄a

x̄a−La

x (dFef )
z−ẇ

]
(99)

and this expression is evaluated in Appendix A for the first bending mode.
With the inclusion of the flexible stability derivatives, the total aerodynamic forces and moments on the

vehicle are

Xtotal = Xcff
+ Xcfa

+ Xcd + Xgh + Xef + XeL
+ XeU

+ XcU
+ XcL

+ T + q∞S
∂CX

∂α
α

+q∞S

(

∂CX

∂α

)

δe

α + q∞S

(

∂CX

∂α

)

δc

α
(100)

Ztotal = Zcff
+ Zcfa

+ Zcd + Zgh + Zef + ZeL
+ ZeU

+ ZcU
+ ZcL

+ q∞S
∂CZ

∂α
α + q∞S

∂CZ

∂q

qc̄

2V∞

+q∞S

(

∂CZ

∂α

)

δe

α + q∞S

(

∂CZ

∂α

)

δc

α + q∞S

(

∂CZ

∂q

)

δe

qc̄

2V∞

+ q∞S

(

∂CZ

∂q

)

δc

qc̄

2V∞

+q∞S
∂CZ

∂η̇a,1
+ q∞S

∂CZ

∂η̇f,1

(101)

Mtotal = Mcff
+ Mcfa

+ Mcd + Mgh + Mef + MeL
+ MeU

+ McU
+ McL

+ Mengine + q∞Sc̄
∂CM

∂α
α+

q∞Sc̄
∂CM

∂q

qc̄

2V∞

+ q∞Sc̄

(

∂CM

∂α

)

δe

α + q∞Sc̄

(

∂CM

∂α

)

δc

α + q∞Sc̄

(

∂CM

∂q

)

δe

qc̄

2V∞

+ q∞Sc̄

(

∂CM

∂q

)

δc

qc̄

2V∞

+q∞Sc̄
∂CM

∂η̇a,1
η̇a,1 + q∞Sc̄

∂CM

∂η̇f,1
η̇f,1

(102)

C. Equations of Motion for a Flexible Vehicle

The equations of motion for the flexible vehicle are6
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V̇T = 1
m

(T cos α − D) − g sin (θ − α)

α̇ = 1
mVT

(−T sinα − L) + Q + g
VT

cos (θ − α)

IyyQ̇ − Ψf η̈f − Ψaη̈a = M

θ̇ = Q

kf η̈f + 2ζfωf η̇f + ω2
fηf = Nf − Ψf

M
Iyy

−
ΨfΨaη̈a

Jyy

kaη̈a + 2ζaωaη̇a + ω2
aηa = Na − Ψa

M
Iyy

−
ΨfΨaη̈f

Jyy

ḣ = VT sin (θ − α)

(103)

where
Ψf =

∫ x̄f

0
xΦf,1(x)dx

kf = 1 +
Ψf

Iyy

Ψa =
∫ x̄a

0
xΦa,1(x)dx

ka = 1 + Ψa

Iyy

(104)

Clearly, the flexible effects are coupled into the pitch rate equation. In addition to this, the bending of the
structure has an effect on the angle of attack of the vehicle. Since engine performance is a function of shock
angle and shock angle is a function of angle of attack, a significant change to the vehicle’s performance can
occur due to structural bending. It is assumed, from the point of view of the bow shock, that the entire
forebody observes the same change in angle of attack as seen at the nose of the vehicle. In other words,
the worst case change in angle of attack is used for the entire forebody. This change in angle of attack is
computed as:

∆α = arctan
[

Φ′
f (x̄f ) ηf,1(t)

]

(105)

The control surfaces also see a change in angle of attack, which affects the properties of the flow over the
surfaces. These changes are given by

∆αcanard = arctan
[

Φ′
f (xcanard) ηf,1(t)

]

(106)

∆αcs = arctan [Φ′
a (xelev) ηa,1(t)] (107)

so that the total angle of attack seen by the control surfaces is

αcanard = α + ∆αcanard

αelev = α + ∆αelev

(108)

The forces due to the control effectors, as given in Eqs. 20, 21 and 30 are written in the rigid vehicle’s
body axis frame. However, when the structure bends, these forces are not aligned with the body axis and
therefore, must be rotated back into the body axis frame. This is accomplished using

FeU
= PeU

Le sin (δe + ∆αe) î + PeU
Le cos (δe + ∆αe) k̂

FeL
= −PeL

Le sin (δe + ∆αe) î − PeL
Le cos (δe + ∆αe) k̂

(109)

and

FcU
= PcU

Lc sin (δc + ∆αc) î + PcU
Lc cos (δc + ∆αc) k̂

FcL
= −PcL

Lc sin (δc + ∆αc) î − PcL
Lc cos (δc + ∆αc) k̂

(110)

In terms of the calculation of the moments produced by the controls, the moment arm is also altered by the
flexible effects. For small displacements of the beams relative to their lengths, the new moment arms become

rcanard =

(

√

x2
canard − (Φf (xcanard)ηf,1)

2
,Φf (xcanard)ηf,1

)

relev =

(

√

x2
elev + z2

elev − (ze + Φa (xelev) ηa,1)
2
, zelev + Φa (xelev) ηa,1

) (111)
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VIII. Results

The model has been linearized at M = 8 and at an altitude of 85, 000 ft using velocity and flight path
angle as outputs and elevator deflection and total temperature addition in the combustor as inputs. One
point of interest that can be obtained from this simulation is the effect of the unsteady terms on the poles
and zeros of the linearized system. Figure 2 shows a pole/zero map for the linearized rigid body system
when unsteady effects are not included, while Fig. 3 shows the poles and zeros of the rigid body system when
the unsteady effects are included. Clearly, the unsteady terms have a significant effect on the unstable pole
and zero. Inclusion of the unsteady terms makes the system more unstable, while increasing the frequency
of the non-minimum phase zero. The actual pole and zero locations are given in Table 1.

Unsteady OFF Unsteady OFF Unsteady ON Unsteady ON

Poles Zeros Poles Zeros

−0.000137 ± j0.023358 1.8694 −0.000151 ± j0.02332 2.64

0.8729 −1.8694 1.125 −2.64

−0.9159 0 −1.216 0

−.00107 N/A −.001027 N/A

Table 1. Poles and Zeros of the Rigid Linearized System.

Figure 2. Poles and Zeros of Linearized Rigid Body System - Unsteady Effects Off.

Now, the flexible effects are included in the vehicle model. Figure 4 shows a pole/zero map for the flexible
vehicle when unsteady effects are not included. Figures 5 and 6 show pole/zero maps when the unsteady
effects are included. The difference here is that the stability derivatives due to η̇f,1 and η̇a,1 are included in
Fig. 6 while they are not in the results shown in Fig. 5. In tabular form, the poles and zeros are shown in
Table 2.

It can be seen that the unsteady effects, computed using piston theory, significantly change the poles and
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Figure 3. Poles and Zeros of Linearized Rigid Body System - Unsteady Effects On.

All Unsteady OFF

Poles Zeros

−.538 ± j26.909 −.538 ± j26.904

−.36 ± j17.99 −.36 ± j17.99

1.23 2.64

−1.32 −2.64

−.00088 0

−.00012 ± j.024 N/A

Table 2. Poles and Zeros of the Flexible Linearized System With All Unsteady Effects Off.

Unsteady On & Unsteady Flex. OFF

Poles Zeros

−.538 ± j26.91 −.538 ± j26.91

−.36 ± j17.99 −.36 ± j17.99

1.88 3.88

−2.06 −3.88

−.00086 0

−.00012 ± j.024 N/A

Table 3. Poles and Zeros of the Flexible Linearized System With Unsteady Effects On and Flexible Unsteady
Effects Off.
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Unsteady On & Unsteady Flex. ON

Poles Zeros

−.55 ± j26.91 −.56 ± j26.89

−.36 ± j17.99 −.36 ± j17.99

1.88 3.88

−2.06 −3.88

−.00086 0

−.00012 ± j.024 N/A

Table 4. Poles and Zeros of the Flexible Linearized System With Unsteady Effects On and Flexible Unsteady
Effects On.

Figure 4. Poles and Zeros of Linearized Flexible System - Unsteady Effects Off.
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Figure 5. Poles and Zeros of Linearized Flexible System - Unsteady Effects On, Unsteady Flexible Effects Off.

Figure 6. Poles and Zeros of Linearized Flexible System - Unsteady Effects On, Unsteady Flexible Effects On.
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zeros of the linearized system. Both the unstable pole and zero of the linearized system move farther to the
right in the s-plane when the unsteady effects are included. Only a slight change in pole and zero locations
is observed when the unsteady effects due to η̇ are included.

Figures 7, 8, and 9 show the lift force, drag force, and pitching moment for a one second run of the
nonlinear simulation. Again, it can be seen that the unsteady effects are significant and are worth including
in the nonlinear simulation.

Figure 7. Lift Force (lbs).

IX. Conclusions

In this work, piston theory is used to develop a model for the longitudinal dynamics of a 2-dimensional
hypersonic vehicle model. In particular, velocities of flow normal to the surface of the vehicle are used in a
first order piston theory framework to determine the pressures on the surfaces of the vehicle. The pressures
are then integrated over the body to determine the forces acting on the vehicle. Piston theory is useful here
because it allows the inclusion of unsteady aerodynamic effects. Initial analysis has shown that the unsteady
effects are significant.
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Figure 8. Drag Force (lbs).

Figure 9. Pitching Moment (ft-lbs).
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A. Flexible Effects

From Eq. 87

Nf,1(t) =
Af,1Pcf

βf,1

h�
− sin

n
βf,1x̄f

o
+ sinh

n
βf,1x̄f

o� �
cos

n
βf,1x̄f

o
+ cosh

n
βf,1x̄f

o
− 2

�i
+

Af,1Pcf

βf,1

h�
cos

n
βf,1x̄f

o
+ cosh

n
βf,1x̄f

o� �
sin

n
βf,1x̄f

o
− sinh

n
βf,1x̄f

o�i
+

Af,1Pcd

βf,1

h�
− sin

n
βf,1x̄f

o
+ sinh

n
βf,1x̄f

o� �
cos

n
βf,1x̄f

o
− cos

n
βf,1

�
x̄f − Lf

�o
+ cosh

n
βf,1x̄f

o
− cosh

n
β1

�
x̄f − Lf

�o�i
+

Af,1Pcd

βf,1

h�
cos

n
βf,1x̄f

o
+ cosh

n
βf,1x̄f

o� �
sin

n
βf,1x̄f

o
− sin

n
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x̄f − Lf
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o
+ sinh
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�o�i
+
�

PcU
− PcL

�
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h�
sin βf,1x̄f − sinh βf,1x̄f
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sin βf,1xcanard − sinh βf,1xcanard

�
+
�
cos βf,1x̄f + cosh βf,1x̄f

� �
cos βf,1xcanard − cosh βf,1xcanard

�i
(112)

Na,1(t) =
2Aa,1Pcf

βa,1

�
sin βa,1x̄a − sinh βa,1x̄a

�
+Aa,1C1C3

24 1

β2
a,1

sin βa,1x̄a −

x̄a

βa,1

cos βa,1x̄a −

1

β2
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sin
�
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�
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�
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�35
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�
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�i
+Aa,1C1C3

24−x̄a

βa,1

cosh βa,1x̄a +
1

β2
a,1

sinh βa,1x̄a +
1
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(x̄a − La) cosh
�
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�

−

1

β2
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�
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�35
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24−x̄a
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sinh βa,1x̄a +
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sinh
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βa,1
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sin βa,1x̄a − sinh
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βa,1 (x̄a − La)

�i
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�
PeU

− PeL

�
Le
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sin βa,1x̄a − sinh βa,1x̄a
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�
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(113)

where

C1 = sin βa,1x̄a − sinhβa,1x̄a

C2 = cos βa,1x̄a + coshβa,1x̄a

C3 =
P∞ − Pe

−La

C4 = C3 (La − x̄a) − Pe

(114)
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From Eq. 97

∂CM

∂η̇f,1

=
2Af,1ρcf acf sin τ1,U tan τ1,U
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From Eq. 98

∂CZ
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(116)

where
k1 = x̄a − La

f1 = ρaaa (sin βa,1x̄a − sinhβa,1x̄a)

g1 = (sin βa,1x̄a − sinhβa,1x̄a) (−aaρa {La − x̄a} + aaρe) (−aaρa {La − x̄a} + aeρa)

h1 = (sinβa,1x̄a − sinh βa,1x̄a) (−ρa {La − x̄a} + ρe) (−aa {La − x̄a} + ae)

ρa = ρ∞−ρe

−La

aa = a∞−ae

−La

(117)
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From Eq. 99
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� 24 3β2
a,1x̄2

a − 6

β4
a,1

sin βa,1x̄a −

β2
a,1x̄3

a − 6x̄a

β3
a,1

cos βa,1x̄a

35
−

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

� 24 3β2
a,1 (x̄a − La)2 − 6

β4
a,1

sin βa,1 (x̄a − La) −

β2
a,1 (x̄a − La)3 − 6 (x̄a − La)

β3
a,1

cos βa,1 (x̄a − La)

35
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

� 24− 1

β4
a,1

�
β
3
a,1x̄

3
a cosh βa,1x̄a − 3β

2
a,1x̄

2
a sinh βa,1x̄a + 6βa,1x̄a cosh βa,1x̄a − 6 sinh βa,1x̄a

�35
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

�
∗

∗

24 1

β4
a,1

�
β
3
a,1 (x̄a − La)

3
cosh βa,1 (x̄a − La) − 3β

2
a,1 (x̄a − La)

2
sinh βa,1 (x̄a − La) + 6βa,1 (x̄a − La) cosh βa,1 (x̄a − La) − 6 sinh βa,1 (x̄a − La)

�35
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 3β2
a,1x̄2

a − 6

β4
a,1

cos βa,1x̄a −

β2
a,1x̄3

a − 6x̄a

β3
a,1

sin βa,1x̄a

35
−

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 3β2
a,1 (x̄a − La)2 − 6

β4
a,1

cos βa,1 (x̄a − La) −

β2
a,1 (x̄a − La)3 − 6 (x̄a − La)

β3
a,1

sin βa,1 (x̄a − La)

35
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 −1

β4
a,1

�
β
3
a,1x̄

3
a sinh βa,1x̄a − 3β

2
a,1x̄

2
a cosh βa,1x̄a + 6βa,1x̄a sinh βa,1x̄a − 6 cosh βa,1x̄a

�35
−

sin
�

τ1,U + τ2

�
q∞Sc̄

J1Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

�
∗

∗

24 −1

β4
a,1

�
β
3
a,1 (x̄a − La)

3
sinh βa,1 (x̄a − La) − 3β

2
a,1 (x̄a − La)

2
cosh βa,1 (x̄a − La) + 6βa,1 (x̄a − La) sinh βa,1 (x̄a − La) − 6 cosh βa,1 (x̄a − La)

�35
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J2Aa,1

24 2x̄a

β2
a,1

sin βa,1x̄a −

βa,1x̄2
a − 2

β3
a,1

cos βa,1x̄a −

8<: 2 (x̄a − La)

β2
a,1

sin βa,1 (x̄a − La) −

βa,1 (x̄a − La)2 − 2

β3
a,1

cos βa,1 (x̄a − La)

9=;35
+

sin
�

τ1,U + τ2

�
q∞Sc̄β3

a,1

J2Aa,1∗

∗

h
β
2
a,1x̄

2
a cosh βa,1x̄a − 2βa,1x̄a sinh βa,1x̄a + 2 cosh βa,1x̄a −

n
β
2
a,1 (x̄a − La)

2
cosh βa,1 (x̄a − La) − 2βa,1 (x̄a − La) sinh βa,1 (x̄a − La) + 2 cosh βa,1 (x̄a − La)

oi
+

sin
�

τ1,U + τ2

�
q∞Sc̄

J2Aa,1

24 2x̄a cos βa,1x̄a

β2
a,1

+
β2

a,1x̄2
a − 2

β3
a,1

sin βa,1x̄a −

8<: 2 (x̄a − La) cos βa,1 (x̄a − La)

β2
a,1

+
β2

a,1 (x̄a − La)2 − 2

β3
a,1

sin βa,1 (x̄a − La)

9=;35
−

sin
�

τ1,U + τ2

�
q∞Sc̄β3

a,1

J2Aa,1

h
β
2
a,1x̄

2
a sinh βa,1x̄a − 2βa,1x̄a cosh βa,1x̄a + 2 sinh βa,1x̄a

i
+

sin
�

τ1,U + τ2

�
q∞Sc̄β3

a,1

J2Aa,1

h
β
2
a,1 (x̄a − La)

2
sinh βa,1 (x̄a − La) − 2βa,1 (x̄a − La) cosh βa,1 (x̄a − La) + 2 sinh βa,1 (x̄a − La)

i
+

sin
�

τ1,U + τ2

�
q∞Sc̄β2

a,1

J3Aa,1

h
2 − cos βa,1La + βa,1 (x̄a − La) sin βa,1La + βa,1 (x̄a − La)

n
sin βa,1x̄a cosh βa,1 (x̄a − La) + cos βa,1x̄a sinh βa,1 (x̄a − La)

oi
+

sin
�

τ1,U + τ2

�
q∞Sc̄β2

a,1

J3Aa,1

h
2 cos βa,1x̄a cosh βa,1x̄a − sin βa,1x̄a sinh βa,1 (x̄a − La) − cos βa,1x̄a cosh βa,1 (x̄a − La) + sin βa,1 (x̄a − La) sinh βa,1x̄a

i
+

sin
�

τ1,U + τ2

�
q∞Sc̄β2

a,1

J3Aa,1

h
− cos βa,1 (x̄a − La) cosh βa,1x̄a − βa,1 (x̄a − La) cos βa,1 (x̄a − La) sinh βa,1x̄a

i
+

sin
�

τ1,U + τ2

�
q∞Sc̄β2

a,1

J3Aa,1

h
−βa,1 (x̄a − La) sin βa,1 (x̄a − La) cosh βa,1x̄a − βa,1 (x̄a − La) sinh βa,1La − cosh βa,1La

i
+

sin
�

τ1,U + τ2

�
q∞Sc̄β2

a,1

J4Aa,1∗h�
sin βa,1x̄a − sinh βa,1x̄a

� �
cos βa,1 (x̄a − La) + cosh βa,1 (x̄a − La)

�
+
�
cos βa,1x̄a + cosh βa,1x̄a

� �
− sin βa,1 (x̄a − La) + sinh βa,1 (x̄a − La)

�i
+

ρcf acf cos τ1,U Aa,1

q∞Sc̄β2
a,1

h�
sin βa,1x̄a − sinh βa,1x̄a

� �
sin βa,1x̄a − βa,1x̄a cos βa,1x̄a − βa,1x̄a cosh βa,1x̄a + sinh βa,1x̄a

�i
+

ρcf acf cos τ1,U Aa,1

q∞Sc̄β2
a,1

h�
cos βa,1x̄a + cosh βa,1x̄a

� �
cos βa,1x̄a + βa,1x̄a sin βa,1x̄a − βa,1x̄a sinh βa,1x̄a + cosh βa,1x̄a − 2

�i
(118)
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Continued from Eq. 99

∂CM

∂η̇a,1 P2

=
ρaaa cos

�
τ1,U + τ2

�
q∞Sc̄

Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

� 24 3β2
a,1x̄2

a − 6

β4
a,1

sin βa,1x̄a −

β2
a,1x̄3

a − 6x̄a

β3
a,1

cos βa,1x̄a

35
−

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

� 24 3β2
a,1 (x̄a − La)2 − 6

β4
a,1

sin βa,1 (x̄a − La) −

β2
a,1 (x̄a − La)3 − 6 (x̄a − La)

β3
a,1

cos βa,1 (x̄a − La)

35
+

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

� 24− 1

β4
a,1

�
β
3
a,1x̄

3
a cosh βa,1x̄a − 3β

2
a,1x̄

2
a sinh βa,1x̄a + 6βa,1x̄a cosh βa,1x̄a − 6 sinh βa,1x̄a

�35
+

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
sin βa,1x̄a − sinh βa,1x̄a

�
∗

∗

24 1

β4
a,1

�
β
3
a,1 (x̄a − La)

3
cosh βa,1 (x̄a − La) − 3β

2
a,1 (x̄a − La)

2
sinh βa,1 (x̄a − La) + 6βa,1 (x̄a − La) cosh βa,1 (x̄a − La) − 6 sinh βa,1 (x̄a − La)

�35
+

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 3β2
a,1x̄2

a − 6

β4
a,1

cos βa,1x̄a −

β2
a,1x̄3

a − 6x̄a

β3
a,1

sin βa,1x̄a

35
−

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 3β2
a,1 (x̄a − La)2 − 6

β4
a,1

cos βa,1 (x̄a − La) −

β2
a,1 (x̄a − La)3 − 6 (x̄a − La)

β3
a,1

sin βa,1 (x̄a − La)

35
+

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

� 24 −1

β4
a,1

�
β
3
a,1x̄

3
a sinh βa,1x̄a − 3β

2
a,1x̄

2
a cosh βa,1x̄a + 6βa,1x̄a sinh βa,1x̄a − 6 cosh βa,1x̄a

�35
−

ρaaa cos
�

τ1,U + τ2

�
q∞Sc̄

Aa,1

�
cos βa,1x̄a − cosh βa,1x̄a

�
∗

∗

24 −1

β4
a,1

�
β
3
a,1 (x̄a − La)

3
sinh βa,1 (x̄a − La) − 3β

2
a,1 (x̄a − La)

2
cosh βa,1 (x̄a − La) + 6βa,1 (x̄a − La) sinh βa,1 (x̄a − La) − 6 cosh βa,1 (x̄a − La)

�35
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J5Aa,1

24 2x̄a

β2
a,1

sin βa,1x̄a −

βa,1x̄2
a − 2

β3
a,1

cos βa,1x̄a −

8<: 2 (x̄a − La)

β2
a,1

sin βa,1 (x̄a − La) −

βa,1 (x̄a − La)2 − 2

β3
a,1

cos βa,1 (x̄a − La)

9=;35
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J5Aa,1∗

∗

h
β
2
a,1x̄

2
a cosh βa,1x̄a − 2βa,1x̄a sinh βa,1x̄a + 2 cosh βa,1x̄a −

n
β
2
a,1 (x̄a − La)

2
cosh βa,1 (x̄a − La) − 2βa,1 (x̄a − La) sinh βa,1 (x̄a − La) + 2 cosh βa,1 (x̄a − La)

oi
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J5Aa,1

24 2x̄a cos βa,1x̄a

β2
a,1

+
β2

a,1x̄2
a − 2

β3
a,1

sin βa,1x̄a −

8<: 2 (x̄a − La) cos βa,1 (x̄a − La)

β2
a,1

+
β2

a,1 (x̄a − La)2 − 2

β3
a,1

sin βa,1 (x̄a − La)

9=;35
−

cos
�

τ1,U + τ2

�
q∞Sc̄

J5Aa,1

h
β
2
a,1x̄

2
a sinh βa,1x̄a − 2βa,1x̄a cosh βa,1x̄a + 2 sinh βa,1x̄a

i
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J5Aa,1

h
β
2
a,1 (x̄a − La)

2
sinh βa,1 (x̄a − La) − 2βa,1 (x̄a − La) cosh βa,1 (x̄a − La) + 2 sinh βa,1 (x̄a − La)

i
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J6Aa,1

h
2 − cos βa,1La + βa,1 (x̄a − La) sin βa,1La + βa,1 (x̄a − La)

n
sin βa,1x̄a cosh βa,1 (x̄a − La) + cos βa,1x̄a sinh βa,1 (x̄a − La)

oi
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J6Aa,1

h
2 cos βa,1x̄a cosh βa,1x̄a − sin βa,1x̄a sinh βa,1 (x̄a − La) − cos βa,1x̄a cosh βa,1 (x̄a − La) + sin βa,1 (x̄a − La) sinh βa,1x̄a

i
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J6Aa,1

h
− cos βa,1 (x̄a − La) cosh βa,1x̄a − βa,1 (x̄a − La) cos βa,1 (x̄a − La) sinh βa,1x̄a

i
+

cos
�

τ1,U + τ2

�
q∞Sc̄

J6Aa,1

h
−βa,1 (x̄a − La) sin βa,1 (x̄a − La) cosh βa,1x̄a − βa,1 (x̄a − La) sinh βa,1La − cosh βa,1La

i
(119)

where
∂CM

∂η̇a,1
=

∂CM

∂η̇a,1 P1

+
∂CM

∂η̇a,1 P2

(120)

J1 = ρaaam1

J2 = −2kρaaam1 + ρaaa {m1x̄a + m2} + {ρeaa + ρaae) m1

J3 = ρaaam1k
2 − 2kρaaa {m1x̄a + m2} − {ρeaa + ρaae}m1k + {ρeaa + ρaae} {m1x̄a + m2} + ρeaem1

J4 = ρaaa {m1x̄a + m2} k2 − {ρeaa + ρaae} {m1x̄a + m2} k + ρeae {m1x̄a + m2}

J5 − 2kρaaa + (ρeaa + ρaae)

J6 = ρaaak2 − k (ρeaaρaae) + ρeae

ρa = ρ∞−ρe

−La

aa = a∞−ae

−La

k = La − x̄a

m1 = tan (τ1,U + τ2)

m2 = −L tan τ1,U

(121)
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